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Abstract

Context Recovery from disturbances is a prominent

measure of forest ecosystem resilience, with swift

recovery indicating resilient systems. The forest

ecosystems of Central Europe have recently been

affected by unprecedented levels of natural distur-

bance, yet our understanding of their ability to recover

from disturbances is still limited.

Objectives We here integrated satellite and airborne

Lidar data to (i) quantify multi-decadal post-distur-

bance recovery of two indicators of forest structure,

and (ii) compare the recovery trajectories of forest

structure among managed and un-managed forests.

Methods We developed satellite-based models pre-

dicting Lidar-derived estimates of tree cover and stand

height at 30 m grain across a 3100 km2 landscape in

the Bohemian Forest Ecosystem (Central Europe). We

summarized the percentage of disturbed area that

recovered to[ 40% tree cover and[ 5 m stand height

and quantified the variability in both indicators over a

30-year period. The analyses were stratified by three

management regimes (managed, protected, strictly

protected) and two forest types (beech-dominated,

spruce-dominated).

Results We found that on average 84% of the

disturbed area met our recovery threshold 30 years

post-disturbance. The rate of recovery was slower in

un-managed compared to managed forests. Variability

in tree cover was more persistent over time in un-

managed forests, while managed forests strongly

converged after a few decades post-disturbance.

Conclusion We conclude that current management

facilitates the recovery of forest structure in Central

European forest ecosystems. However, our results

underline that forests recovered well from distur-

bances also in the absence of human intervention. Our

analysis highlights the high resilience of Central

European forest ecosystems to recent disturbances.
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Introduction

Natural disturbances are important drivers of forest

ecosystem dynamics. They shape forest ecosystem

structure and functioning by creating biological lega-

cies such as logs and snags (Lindenmayer et al. 2004),

and by increasing the heterogeneity of forests from

stand to landscape scales (Turner 2010). Yet, there is

growing evidence of changing disturbance regimes

under climate change (Seidl et al. 2017), requiring

forest managers to increasingly focus on the resilience

of ecosystems to disturbance (Seidl et al. 2016c). A

prerequisite for developing management actions that

foster resilience is the ability to measure and quantify

indicators of resilience (Scheffer et al. 2015).

Post-disturbance recovery is an important indicator

of ecosystem resilience, with fast recovery generally

suggesting a high level of resilience (Scheffer et al.

2015; Seidl et al. 2016c). Forest recovery can be

measured using different indicators (Frolking et al.

2009; Trumbore et al. 2015), including recovery in

forest structural elements (Bolton et al. 2015; Bartels

et al. 2016), floristic indicators (McLachlan and

Bazely 2001; Nagel et al. 2006), and biomass (Wil-

liams et al. 2012; Dobor et al. 2018). As disturbances

affect ecosystem service supply predominately nega-

tively (Thom and Seidl 2016), the time it takes to

recover important forest properties also is a key

determinant of the societal impact of disturbances.

However, recovery is a retrospective indicator of

resilience that can only be assessed after a perturbation

has taken place. A prospective view of resilience can

be gleaned, for instance, from spatial heterogeneity.

Heterogeneity can dampen the cross-scale interactions

and amplifying feedbacks that are necessary for

catastrophic events and regime shifts (Peters et al.

2004). Specifically, variability in recovery can have

long-lasting effects on the development of forest

ecosystems (Meigs et al. 2017), and can decrease the

vulnerability of forests to future disturbances by

preventing synchronous exceedance of susceptibility

thresholds for, e.g., bark beetle outbreaks (Seidl et al.

2016a). Hence, not only the temporal signal of

recovery (i.e., recovery rate) but also its spatial pattern

(i.e., variability in recovery) needs to be considered for

a comprehensive quantification of forest ecosystem

resilience to disturbance (Scheffer et al. 2015; Braz-

iunas et al. 2018).

The forests of Central Europe have been strongly

affected by natural disturbances from wind and bark

beetles recently (Seidl et al. 2014b; Senf et al. 2018),

with unprecedented disturbance levels in at least the

last century (Schurman et al. 2018). Consequently, the

ability of these forests to recover has come into focus.

Recent research has addressed the initial establish-

ment of tree-seedlings in the first years after a

disturbance, demonstrating that forests affected by

bark beetles and wind regenerate well through self-

replacement (Svoboda et al. 2010; Zeppenfeld et al.

2015; Macek et al. 2017). These local studies deliv-

ered important insights into the potential of Central

European forests to recovery from a disturbance. Yet,

a landscape-scale perspective on long-term post-

disturbance recovery trajectories is still missing to

date. We lack, for instance, important information on

the overall proportion of forests that have recovered

from a disturbance in a given landscape, as well as on

the spatial variability of disturbance recovery.

Addressing such questions requires a complementary

broad-scale approach to estimating recovery, such as

the analysis of remote sensing data.

Remote sensing has emerged as an important tool

for quantitative assessments in the field of disturbance

ecology. While mapping forest disturbances from

remote sensing data is now feasible (Banskota et al.

2014), the analysis of post-disturbance recovery has

received less attention to date. Recent studies have

used data from active sensors such as light detecting

and ranging (Lidar) to quantify post-disturbance

structural characteristics and recovery trajectories

(Bolton et al. 2015; Vogeler et al. 2016; Latifi et al.

2016; Bolton et al. 2017; Hill et al. 2017). However, as

those approaches are limited in their spatial and

temporal extent, it might be beneficial to also utilize

data from passive, satellite-borne sensors—such as

Landsat—for mapping post-disturbance recovery

across extended spatio-temporal scales (Kennedy

et al. 2007; Schroeder et al. 2007). Trends in spectral

recovery derived from Landsat time series can give

valuable insights into the regrowth of vegetation after

large-scale disturbances such as clear-cutting and fire

in the boreal forests (Frazier et al. 2015; White et al.

2017; Frazier et al. 2018). It remains unclear, however,

whether Landsat is also suited for characterizing post-

disturbance recovery in more fine-grained landscapes

such as the forests of Central Europe.
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Forests in Central Europe are by large parts

managed ecosystem, with approximately 70% of the

total forest area being under active management and

only 4% of Europe’s forests being without impact by

humans (Forest Europe 2015). Management in Central

Europe includes clear-cut harvest, salvage harvesting

in response to natural disturbances (Stadelmann et al.

2013), gap and shelter-wood cutting to induce

advanced regeneration, and planting after clear-cut

or natural disturbance. The latter is intended to foster

post-disturbance recovery, with managers often ques-

tioning the ability of forests to recover naturally after

disturbance. However, as planting is executed largely

uniformly in space, it could at the same time decrease

the structural diversity in early- to mid-successional

stages of forest development relative to natural forest

regeneration (Donato et al. 2012). Furthermore,

salvage harvesting in response to natural disturbances

frequently removes important pre-disturbance lega-

cies, reducing structural diversity (Bace et al. 2015)

and habitat quality of the resulting managed early-

seral forests (Swanson et al. 2011; Thorn et al. 2017).

It therefore remains an open question whether man-

agement improves the recovery from natural distur-

bances, or if forests of Central Europe are resilient to

the current disturbance regimes even without human

intervention.

Here, our aim was to quantify and compare long-

term post-disturbance forest recovery in managed and

un-managed forests in Central Europe. We used

satellite data to predict Lidar-based estimates of tree

cover and stand height across a 3100 km2 landscape at

the border of Austria, Czechia, and Germany (includ-

ing two major National Parks). We then assessed the

performance of varying spectral indices and remote

sensing metrics, as well as the effect of training sample

size on model performance. Furthermore, we com-

bined the predicted tree cover and stand height maps

with satellite-based maps of past forest disturbance

(from 1985 onwards), allowing us to summarize and

compare recovery and variability in both tree cover

and stand height between managed and un-managed

forests, as well as between different elevation bands.

Elevation hereby served as proxy for different dom-

inant tree species in the region (Röder et al. 2010;

Bässler et al. 2016). In sum, our objectives were:

(i) quantify multi-decadal post-disturbance recovery

focusing on two indicators of stand structure, and (ii)

compare recovery trajectories of stand structure

between managed and un-managed forests.

Materials and methods

Study landscape

Our study landscape is situated in the Bohemian Forest

ecosystem (48� 570 N 13� 260 E; Fig. 1), which is a

typical Mittelgebirge mountain range situated along

the border of Austria, Czechia and Germany. Eleva-

tion ranges from 300 m a.s.l. in valleys to 1,450 m

a.s.l. along the main mountain ridge. The climate is

characterized by a moderate to cool montane climate

(3 to 4 �C mean annual temperature) with relatively

high precipitation levels (annual total of 1300 to

1800 mm) that decreases from west to east. The centre

of the area is formed by two conjoined protected areas,

the Bavarian Forest National Park in Germany

(240 km2; established 1970) and the Šumava National

Park in Czechia (690 km2; established 1991). The

most important tree species are Norway spruce (Picea

abies (L.) Karst.), European beech (Fagus sylvatica

L.), and silver fir (Abies alba Mill.).

The study landscape can broadly be divided into

three management regimes (Fig. 1): (1) Strictly pro-

tected, (2) protected, and (3) managed forests. The

first regime, strictly protected, characterizes areas that

were not managed at all during the analysis period

1985–2016 (i.e., core zones of national parks1). In

those areas, no human intervention is allowed, and

disturbance and recovery reflect natural ecosystem

dynamics, developing without human interference

(Senf and Seidl 2018). Themajor disturbance agents in

the strictly protected areas are bark beetles and wind

storms. The second management regime, protected,

contains all areas which are within the boundaries of

national parks, but which were subject to some human

intervention during the study period. Interventions in

the protected management regime included salvaging

or other treatments of natural disturbances to contain

the spread of bark beetles to areas outside the national

park. The second management regime thus comprises

1 Please note that the current core zones of the national parks

are larger than shown in Fig. 1, yet we here focus on areas

where management was excluded over the entire study period

1985–2016.
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only management interventions in response to natural

disturbances, but does not include regular, planned

harvesting interventions. The third management

regime, managed, comprises forests of varying own-

ership (private and public) and management objec-

tives. The disturbance regime in this last area can be

characterized as human-dominated, with typical man-

agement interventions including clearcut harvesting

with and without planting, as well as gap and

shelterwood cutting to support natural regeneration.

Hence, the management areas include mostly human-

caused forest disturbances. However, also the area

under this third management regime was subject to

natural disturbances by wind and bark beetles during

the study period. However, usual management

responses to natural disturbances include sanitation

and salvage logging as well as replanting to facilitate

swift recovery.

Mapping post-disturbance forest structure

Landsat-based disturbance and recovery metrics

All Landsat data from the United States Geological

Survey (USGS) and European Space Agency (ESA)

archives were downloaded and processed to annual

best observation composites following the methods

described in Senf et al. (2017). In essence, processing

involved the calculation of surface reflectance values,

the creation of cloud and cloud-shadowmasks, and the

creation of median spectral reflectance composites

including only clear growing-season observations

(between June 1st and August 31st) during the study

period (1985–2016). Additionally, we acquired maps

of stand-replacing forest disturbances and disturbance

onset (i.e., the first year of disturbance; Point A in

Fig. 2) from Senf et al. (2017). The disturbance maps

had an overall accuracy of 87% with error of

commission/omission for the disturbances class being

5% and 3%, respectively. The year of disturbance was

estimated correctly for 80% of the disturbances given

a ± 1-year tolerance.

We transferred the multi-spectral median compos-

ites from Landsat into three spectral indices com-

monly used for disturbance and recovery mapping: the

normalized burn ratio (NBR; Key 2006), the Tasseled

Cap wetness component (TCW; Crist 1985), and the

disturbance index (DI; Healey et al. 2005). The NBR

has been employed in a variety of studies mapping

disturbances (Meigs et al. 2011; Kennedy et al. 2012;

Hermosilla et al. 2015) and recovery (Pickell et al.

2015; White et al. 2017) and is linked to structural

changes in disturbed and recovering vegetation.

Similarly, the TCW has been employed for assessing

disturbance and recovery (Hais et al. 2009; Senf et al.

2015), also being sensitive to structural changes in the

tree canopy. The DI integrates all Tasseled Cap

components (brightness, greenness and wetness), thus

delivering a more holistic view on forest changes (see,

for example, Hais et al. 2009). In order to remove

residual clouds and outliers from the spectral index

time series—which might obscure further analysis—

we followed Kennedy et al. (2010) in detecting and
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Fig. 1 Study landscape with the three management regimes and availability of Lidar data (a), disturbance patches and forest area

mapped from Landsat data (b), and location of the study landscape in Central Europe (c)
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removing spikes based on a normalized difference

measure between neighboring observations.

For characterizing disturbances and recovery—and

subsequently predicting forest structure after distur-

bance—we developed a set of metrics describing the

spectral and temporal characteristics of disturbance

and recovery. We first determined the end of distur-

bance for each disturbed pixel by identifying the

minimum spectral value after the onset of a distur-

bance (Point B in Fig. 2). This step was necessary as

particular disturbances by biotic agents often extend

over several years, and the start of recovery is thus not

accurately characterized by the disturbance onset (see,

for example, Fig. 2). Once the end of a disturbance

was identified, we calculated the spectral magnitude of

disturbance (absolute disturbance magnitude), defined

as the spectral difference between the mean of all

observations before the disturbance onset (pre-distur-

bance spectral value; segment 1 in Fig. 2) and the

spectral value at the end of a disturbance segment

(segment 2 in Fig. 2). We also calculated the relative

disturbance magnitude by dividing the absolute dis-

turbance magnitude by the pre-disturbance spectral

value. We assessed the length of disturbance as the

difference in years between disturbance onset and end

(point A and B in Fig. 2, respectively). For further

characterizing the pre-disturbance spectral character-

istics, we also calculated the slope of all observations

before disturbance (pre-disturbance slope; Hais et al.

2016).

For characterising recovery, we fit a linear-log

model to the spectral recovery trajectory (segment 3 in

Fig. 2), providing a good approximation of short-term

spectral recovery (i.e., initial rapid changes in spectral

signal) and longer-term spectral trends (saturation of

the spectral signal after approx. 10–15 years; see

Fig. 2). We also tested linear, exponential, power and

logit models, but found that the linear-log model

provided the best balance between model fit and

stable model performance. No model was fit if less

than five observations were available. From the linear-

log model we derived two metrics summarizing the

spectral recovery trend: The absolute and relative

short-term spectral recovery and the time until spectral

recovery (Kennedy et al. 2010; White et al. 2017). The

first metric is derived by the absolute spectral change

5 years after the end of disturbance (absolute short-

term recovery; point C in Fig. 2), which is divided by

the disturbance magnitude for deriving the relative

short-term recovery. The second metric (long-term

spectral recovery) is derived by counting the number

of years until the model reaches 80% of the pre-

disturbance spectral value (point D in Fig. 2). We also

tested a variety of other thresholds for the short- and

long-term recovery metrics (i.e., recovery after 3, 10

or 15 years; pre-spectral threshold of 60%, 90% or

100%), but found generally high correlation between

metrics (Pearson r[ 0.90) and thus decided to follow

the metrics recommended in White et al. (2017).

Finally, we estimated the time since disturbance as the

length of the recovery trajectory in years.

Lidar-based estimates of tree cover and stand height

We used a Lidar-based 1 m spatial resolution canopy

height model (CHM) from 2012 to derive post-

disturbance structural variables at Landsat spatial

resolution (i.e., 30 m pixels). The CHM data was

generated by the national park authorities from full-

waveform Lidar data (Riegl 680i laser scanner,

350 kHz, nominal point density of 30–40 points per

m2) acquired from an average altitude of 650 m above

ground (ca. 300–400 m swath width) over 3 days in

June under leaf-on conditions. We followed Bolton

et al. (2015) and Bolton et al. (2017) in deriving

Fig. 2 Example Landsat spectral trajectory. Note that the

disturbance and recovery metrics are here exemplified using the

NBR trajectory. Each grey dot is an annual Landsat observation

of one example pixel. Point A indicates the start of disturbance.

Point B indicates the end of disturbances and hence the start of

recovery. Point C indicates the spectral recovery after 5 years

(short-term spectral recovery), whereas point D indicates the

80% spectral recovery (long-term spectral recovery). Segment 1

indicates the pre-disturbance observations. Segment 2 indicates

the disturbance segment, from which the disturbance magnitude

and duration are derived. Segment 3 indicates the recovery

model
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metrics of post-disturbance tree cover and stand

height, respectively. Tree cover was calculated as

the share of 1 m CHM pixels that had a height greater

2 m, including both regenerating (2 to 5 m) and

mature ([ 5 m) trees, but excluding taller shrub and

herbs (Latifi et al. 2016). Stand height was calculated

as the 75% quantile of all 1 m CHM pixels. The 75%

quantile, in contrast to upper quantiles (i.e., 99%), is

more closely linked to the height structure of recov-

ering trees, and likely less influenced by residual trees

(Bolton et al. 2017). Yet, correlation analysis between

the 75% quantile and other quantiles commonly used

(i.e., 50%, 95% and 99%) indicated high similarity

among stand height metrics (Pearson r[ 0.8).

Predictive models of post-disturbance tree cover

and stand height

Using the two Lidar-based forest structural metrics as

response variables and the disturbance and recovery

metrics described in the previous section as predictors

(Table 1), we built predictive models using random

forest regression (Breiman 2001; Ahmed et al. 2015).

We build three models for each of the three spectral

indices compared in this study (NBR, TCW, and DI).

Further, we trained models with an increasing pro-

portion of pixels used for training (0.25, 0.5, 1, 2.5, 5,

10, 20%), thus testing the effect of training sample size

on model performance. To ensure that the full data

space is utilized for training, we applied a stratified

sampling design that first cuts all data points into

quintiles and following selects n/5 samples at random

from each quintile. Finally, to prevent including

disturbances that occurred after Lidar data acquisition,

we restricted the analysis to disturbances before 2009

(Lidar acquisition minus 3 years, which is the median

disturbance duration). For assessing model

performance, we randomly sampled an independent

(i.e., not used for training) sample of n = 5000 pixels.

From this validation sample, we calculated the root

mean squared error (RMSE), the relative RMSE

(divided by the mean), and the squared Pearson

correlation coefficient (r2). Finally, we used the best

performing model with minimum amount of training

data (i.e., the most parsimonious and computationally

least intensive model) to predict post-disturbance tree

canopy cover and stand height for each disturbed

pixel. By doing so we yielded continuous maps of

post-disturbance tree cover and stand height for the

year 2016, and thus with variable time since distur-

bance (5–30 years).

Analyzing structural recovery rates

We assumed a pixel to be structurally recovered if a

minimum tree cover of 40% and a minimum stand

height of 5 m were reached, closely following com-

mon forest definitions (Chazdon et al. 2016). We thus

only assess whether a pixel can be considered

reforested, but do not address recovery in floristic

composition or biomass. To assess rates of structural

recovery, we calculated the percentage of pixels

meeting our recovery threshold for each year after

disturbance (5–30 years). The calculation was strati-

fied by the management regimes described in Sect. 2.1

(Fig. 1), as well as by elevation bands. Elevation was

split into\ 1150 m and C 1150 m, with the former

representing beech-dominated and the latter repre-

senting spruce-dominated forests (Röder et al. 2010;

Bässler et al. 2016). To test for differences in recovery

trajectories, we fit logistic functions to the recovery

trajectories using non-linear regression. We weighted

the parameter estimation by the number of observa-

tions, avoiding years with only few pixels to distort the

Table 1 Average percentage of disturbed areas that structurally recovered at 30 years post-disturbance

Stratum Percent of disturbed area structurally recovered

Beech-zone Spruce-zone

Strictly protected 86 (83–90) 92 (89–94)

Protected 84 (80–88) 79 (75–84)

Managed 55 (47–63) 60 (52–68)

Estimates are derived from logistic functions shown in Fig. 5. Values in brackets indicate the 95% prediction interval derived from

parametric bootstrap
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model fit. From the logistic model, we derived the

percentage of pixels recovered after 30 years as

comparable measure across management regimes

and elevation bands. Uncertainties in the logistic

model were quantified using parametric bootstrap with

10,000 replications (Bates and Watts 2007).

Analyzing variability in tree cover and stand

height

To assess the variability in tree cover and stand height

after disturbance, we calculated the coefficient of

variation for both indicators. To calculate the coeffi-

cient of variation—which needs a vector of data points

and thus can’t be calculated at the pixel level—we

aggregated the tree cover and stand height maps to a

grid of five times five Landsat pixels (equalling

2.25 ha). The coefficient of variation thus serves as a

proxy for the variability of tree cover and stand height

among neighboring pixels, with a higher value indi-

cating a higher local variability.We also calculated the

median time since disturbance and the mean elevation

for each grid cell, thus allowing us to stratify the

analysis by time since disturbance and elevation, as

described above.

Result

Mapping post-disturbance tree cover and stand

height

The best predictive performance with minimum

training data was achieved by the random forest

models using the NBR-based disturbance and recov-

ery metrics and 10% (n = 9424) of the total data for

training (see Fig. 7 in the ‘‘Appendix’’). In the

following we thus report results for these models

only. The final tree-cover model had an r2 of 0.71, a

RMSE of 0.15 and a relative RMSE of 57% (Fig. 3).

The final stand height model had an r2 of 0.58, a

RMSE of 3.33 and a relative RMSE of 102% (Fig. 3).

Maps of post-disturbance tree cover and stand

height provide a detailed picture of the spatial

variability in both structural variables across the

landscape (Fig. 4). Well visible is the large area

disturbed by bark beetles in the strictly protected part

of the study area, with highly variable tree cover and

stand height (Fig. 4a). In contrast, areas

predominantly characterized by small-scale distur-

bance patches and forest management showed a more

homogeneous tree cover and stand height (Fig. 4b).

Rates of structural recovery

The rate of structural recovery after disturbance was

high, with on average 84 (79–882) % of the disturbed

areas reaching our recovery thresholds (i.e., a mini-

mum tree cover of 40% and minimum stand height of

5 m) after 30 years. Recovery rates varied, however,

significantly between management regimes (i.e., no

overlap of the 95% confidence intervals in Fig. 5 and

Table 1). Fastest recovery was always found in

managed forests, with on average 86 (83–90) % of

the disturbed area in the beech-zone and 92 (89–94) %

in the spruce-zone being recovered after 30 years. In

strictly protected forests, only 55 (47–63) % of the

disturbed area in the beech-zone and 60 (52–68) % in

the spruce-zone reached the recovery threshold after

30 years. Recovery rates in protected forests—that is

where natural disturbances are salvage harvested but

not planted—were similar to managed forests in the

beech-zone (84 [80–88]% of the disturbed area

reaching the recovery threshold after 30 years),

whereas recovery in protected forests of the spruce-

zone was slower than in managed forests, but faster

than in strictly protected forests (79 [75–84] % of the

disturbances reaching the recovery threshold after

30 years).

r2 = 0.7
RMSE = 0.14 (58 %)
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Fig. 3 Scatterplots between predicted and observed post-

disturbance canopy cover and stand height. Grey isolines

indicate data density. The black horizontal line indicates the

1:1 line. Reported are the squared correlation coefficient (r2), the

root mean squared error (RMSE), and the relative RMSE

(relative to the mean; in brackets)

2 We here always report the 95% prediction interval derived

from parametric bootstrap with 10,000 replications.
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Variability in post-disturbance tree cover and stand

height

Differences in the variability of both tree cover and

stand height between management regimes were

generally low (Fig. 6). However, two important

insights emerged. First, variability in stand height

was significantly higher in strictly protected forests

compared to managed forests in the beech-zone.

Second, while variability in tree cover among all

three management regimes was more similar in the

initial years post-disturbance, variability in tree cover

in managed and protected forests sharply declined

after 25 years post-disturbance. Strictly protected

forests, in turn, didn’t show this decline, and had a

significantly higher variability in tree cover than

managed forests 25 to 30 years post-disturbance,

especially in the beech zone.

Forest

No forest

(A1) (B1) (C1)

A

(B2) (C2)

Tree cover [%]

35

7.5

(A2)

B

C

Disturbance too recent

70

Stand height [m]

0

15 1

Fig. 4 Maps of post-disturbance tree cover and stand height for

the study landscape in the year 2016. Close-up A shows an

unmanaged bark beetle outbreak (ca. 1995) with high variability

in tree cover and stand height. Close-up B shows a managed

forest with small-scale harvests, and homogeneous tree cover

and stand height after disturbance. Close-up C shows a managed

wind-throw (i.e. a combination of natural and human distur-

bance) with variable post-disturbance tree cover and stand

height. Disturbances after 2011 were not included in the analysis

and are here labeled as disturbance too recent
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Discussion

Differences in structural recovery rates

Our results underline the high potential of Central

European forests to recover from recent disturbance

events, with 84 (79–88) % of the disturbed area

exceeding 40% tree cover and 5 m stand height after

30 years. These rates are in the same order of

magnitude as those found for other temperate forest

ecosystems recovering from large, severe natural

disturbance events (e.g., recovery after the Yellow-

stone fire, see Turner et al. (2016)). The speed of

recovery differed substantially between managed and
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Fig. 5 Structural recovery trajectories after disturbance for the

full landscape (left) as well as stratified by elevation bands and

management regimes (right). Recovery is here defined as

reaching a minimum tree cover of 40% and a minimum stand

height of 5 m. The ribbons indicate the 95% prediction interval
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Fig. 6 Variability in tree cover and stand height in five-year

time-steps after disturbance. Variability is expressed as the

coefficient of variation in a 2.25 ha forest patch (i.e., five times

five Landsat pixels). Error bars indicate the 95% confidence

interval. Shape of the dots indicate whether there were

significant (p\ 0.05) differences after FDR-correction
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un-managed forests, meeting our expectations of

faster recovery in managed forests. The faster recov-

ery in managed forests can most likely be attributed to

planned canopy openings via silvicultural interven-

tions (resulting in advanced regeneration) and planting

on disturbed sites, both facilitating a rapid and

successful recovery. Yet, while slower in their recov-

ery, forests also recovered from disturbance in the

absence of any human intervention. Our results at the

landscape scale are thus in line with local field-based

evidence of high regeneration success following

natural disturbances (Svoboda et al. 2010; Nováková

and Edwards-Jonášová 2015; Zeppenfeld et al. 2015).

Central European forests ecosystems are thus highly

resilient to recent disturbance events. The future

resilience of forests, however, remains an open

question to be addressed in future work. Climate

change has the potential to reduce resilience, causing

larger disturbed areas and thus longer distances to seed

source, while regenerating trees could increasingly

suffer from extreme climatic events (Hansen et al.

2018; Johnstone et al. 2016).

It is important to note that we here only addressed

one component of forest recovery, namely recovery in

stand structure. While tree cover and stand height are

important indicators of forest recovery that can be

readily assessed over large areas (Bolton et al.

2013, 2015, 2017), other important indicators of

recovery exist (Trumbore et al. 2015; Seidl et al.

2016c). For example, we did not assess floristic

indicators here, yet tree species composition has been

generally found to recover more slowly from distur-

bances than forest structure (Seidl et al. 2014a).

However, for our study system there is strong evidence

that recent disturbances have not changed species

composition (Svoboda et al. 2010; Nováková and

Edwards-Jonášová 2015; Zeppenfeld et al. 2015;

Macek et al. 2017). Also, non-native tree species are

of limited concern in our study system, as managers

typically plant fast-growing and economically valu-

able native tree species such as Norway spruce.

Differences in variability in tree cover and stand

height

We found slightly higher structural variability in un-

managed forests, especially [ 25 years post-distur-

bance. This finding is well in line with theoretical

considerations suggesting that initial variability in

recovery and pre-disturbance structural legacies lead

to high structural diversity already in early stages of

forest development (Donato et al. 2012; Bace et al.

2015), which can persist throughout stand development

(Braziunas et al. 2018;Meigs et al. 2017). Especially the

higher variability in stand heights for beech-dominated

forests suggests the development of a more diverse

canopy structure in unmanaged forests compared to

managed forests. The slightly higher variability in tree

cover found here further suggests that un-managed

forests have a more irregular spacing and a higher

fraction of gaps. However, differences in structural

diversity were less obvious in forests characterized by

only a single species that is in the spruce-zone. Our

results thus highlight the concurrent importance of

species diversity, in addition to structural diversity.

While a higher structural variability in un-managed

forests likely means a reduced primary productivity

(Bohn and Huth 2017; Zeller et al. 2018), it favors

habitat diversity and thus is beneficial for biodiversity

(Hilmers et al. 2018; Donato et al. 2012). Specifically,

the diverse structures emerging after natural distur-

bances in unmanaged forests have recently been shown

to harbor equal levels of plant and animal diversity as

old-growth forest systems (Hilmers et al. 2018).

Furthermore, a more diverse and patchy recovery—as

shown for beech-dominated forests here—will benefit

light-demanding early-seral species (Swanson et al.

2011; Lehnert et al. 2013) and could prevent the

formation of homogeneous and species-poor pole-stage

stands. In addition to benefiting biodiversity, variable

recovery trajectories can also increase the future

resilience of the system (Seidl et al. 2016a). As the

primary species regenerating in our system is spruce

(Svoboda et al. 2010; Zeppenfeld et al. 2015; Macek

et al. 2017), the future risk for large-scale outbreaks of

the European spruce bark beetle (Ips typographus L.) is

high. Variability in recovery could prevent the syn-

chronous exceedance of tree-size related susceptibility

thresholds (Raffa et al. 2008; Seidl et al. 2016b), thus

increasing the future stability of the system.However, as

we found differences in structural diversity to be less

distinct in areas dominated by spruce, further research is

needed to test this hypothesis.

Methodological considerations

We here showed that Landsat time series—in con-

junction with airborne Lidar data—can be
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successfully utilized for mapping post-disturbance

tree cover and stand height in Central European

forests. Yet, prediction accuracies were lower than

those reported for landscapes in North America

(Pflugmacher et al. 2012; Ahmed et al. 2015; Vogeler

et al. 2018), especially for tree height. Differences

might be explained by the higher spatial complexity of

disturbances in our landscape (i.e., many mixed pixels

containing disturbed and undisturbed areas due to the

fine grain of the prevailing disturbance regime; Senf

et al. 2017). We also note that most of the disturbances

happened relatively recently (median time since

disturbance: 11 years), leading to an overall low

central tendency and variance in both tree cover and

stand height, and thus a relatively high relative

predictive error (Fig. 3). A further limitation lies in

the fact that the Lidar data available for the current

analysis was not evenly distributed across the three

management regimes. While the uncertainties in our

models might thus be higher than those obtained from

terrestrial inventories, our approach—for the first

time—allowed for a landscape-scale mapping of

forest recovery for the Bohemian Forest. As such,

Landsat—in combination with auxiliary Lidar data—

is a promising tool for complementing existing data

from field studies and modelling.

Conclusions and management implications

Our results have important implications for foresters

and conservation managers. We here provide quanti-

tative evidence that forest management did indeed

facilitate the structural recovery of forests over un-

managed conditions. This indicates that targeted

management activities such as planting and fostering

advanced regeneration might increase forest resilience

to disturbances. At the same time, however, active

management also tended to decrease the structural

heterogeneity in the recovering forest, which has the

potential to erode the future resilience of the system.

This underlines that new management responses to

disturbance are needed that maintain resilience, both

in the short- and long-term. In the context of protected

area management, we here show that natural distur-

bances—while killing trees—do not kill the forest, and

that forests of Central Europe are well able to recover

naturally from such large and severe disturbance

events. Salvage harvesting and sanitation cutting in the

buffer zones of protected areas did not significantly

impede structural recovery, but showed a tendency to

reduce structural variability in at least one of the two

studied forest types. The increased diversity in natu-

rally recovering forests is likely benefiting biodiver-

sity, and thus contributing to the specific management

objectives in protected areas. In conclusion, our

analysis provides quantitative evidence for a high

resilience of the forests of Central Europe to recent

natural disturbance events.
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Appendix

See Fig. 7.

Fig. 7 Comparison of several sample sizes and the three

spectral indices for predicting post-disturbance tree cover and

stand height derived from Lidar data. Error bars indicate the

95% confidence interval derived from repeating the model

calibration/validation 30 times
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